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Abstract

In this paper, we explore the relationship between the statistic skew and known
behavioral biases. We investigate the impact that skew has on the perception of
performance as a function of time, and we show that negative skew artificially im-
proves performance over the short term, while positive skew has the opposite effect.
We quantify the relationship between skew and drawdown depth and length, and
we show that negative skew increases drawdown depth and length, and that again
positive skew does the opposite. Finally, we explore the relationship between skew,
volatility, and drawdown, and we show that negative skew amplifies the increase
that volatility causes in drawdown depth and length, while positive skew has a
corresponding dampening effect.

Keywords: skew, volatility, drawdown, behavioral biases, loss aversion, re-
cency bias
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1 Introduction

Certain investment strategies pick up the proverbial pennies in front of a moving
train. This approach results in a high probability of long sequences of small gains
at the risk of a catastrophic loss. Other strategies, such as venture capital, depend
on a small number of investments being homeruns at the cost of many small losers.
Trend following, like venture capital, brings positive skew to investors’ portfolios.
This statistical attribute stems from the nature of the system, frequent but small
losses in search of the rare but large wins. Dugan and Greyserman [2018] document
how this aspect of the strategy can make it painful for investors. Dugan, Greyser-
man, and Friccione [2017] explore the relationship a strategys volatility and Sharpe
have with drawdown depth and length. However, the simulations drew from normal
distributions with no skew.

In this paper, we build on concepts from both papers by incorporating skew into
the analysis. Through simulation, we demonstrate that skew can distort percep-
tion of performance over short periods of time, and we document the relationship
between skew and behavioral biases. We quantify the impact that skew has on
drawdown depth and length under various volatilities, returns, and time durations.
Ultimately, we show that while negative skew appeals to inherent human biases, it
increases both drawdown depth and length, and it amplies the increase in draw-
down depth that volatility causes.

In Section 2, we review the behavioral biases relevant to this analysis. We
demonstrate the role that skew plays in probability distributions of returns in Sec-
tion 3. In Section 4, we present results from simulations of outperformance as a
function of skew and time period. We show the impact that skew has on draw-
down depth and length in Section 5. In Section 6, we conclude. We review our
manufacture of skew through gamma distributions and skew normal distributions
in Appendices A and B, and in Appendix C, we describe the full return construction.

2 Behavioral Biases

Dugan and Greyserman [2018] describe how behavioral biases impact the posi-
tively skewed quantitative investing strategy, trend following. Here, we quickly
review two of the biases discussed in that paper: loss aversion and recency bias. In
1979, Amos Tversky and Daniel Kahneman introduced Loss Aversion to describe
the theory that people dislike losing two times as much as they enjoy winning, and
that people tend to magnify losses in their minds.[11, 17, 12, 3, 4, 8, 14, 15] As
Dugan and Greyserman [2018] document, this bias negatively influences investor’s
perception of return series with frequent losses.

Recency bias is the over-emphasis of recent information. It is the financial ver-
sion of a cognitive bias called the availability heuristic, in which people tend to make
predictions based on information that is usually more recent, available, and easy to
remember. In finance, this can be particularly problematic when the same calcula-
tion on different sets of time yield different results.[7, 10, 16] When investors place
greater importance on recent data, they lose comprehensive perspective, which can
lead to poor decisions.
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As an example, 100% of the profits time series momentum strategies come from
the top 10% of the months.[6] Positive skew dictates that if an investor analyzed
only a small, more recent sample, and missed one of the big months, he or she
would form a very different opinion on the strategy than if they analyzed the en-
tire history. Thus, the nature of the return series with positive skew make those
strategies seem less valuable to investors swayed by recency bias.

For a more detailed look at these behavioral biases and others as they pertain
to quantititive time-series momentum strategies, see Dugan and Greyserman [2018]
and references therein.

3 Probability Distributions

Probability Distribution Functions (PDFs) of returns show the probabilities of var-
ious returns randomly occuring and can help visualize how the probabilities of
specifc returns change with skew. More specifically, PDFs can be modified to gen-
erate specific returns, volatilities, and skews.

In Exhibit 1, we show gamma distributions of daily returns with various neg-
ative skews that each produce return series with annual compounding returns of
20% and volatilities of 20% over long periods of time. We describe the construc-
tion of gamma distributions in Appendix A. The average daily return neccessary
to produce this return annual is 0.0726%. As the skew decreases, the mode of
the distribution grows increasingly larger than the average. However, the mean
of the distribution remains the same because the probability of large negative re-
turns increases simultaneously. Thus, for negatively skewed distributions, the most
common returns may be small and positive, but the probability of a large negative
return is also much greater.

Exhibit 1: Probability Distribution Functions of
Gamma Distributions of negative skew that each
produce returns of 20% and volatilities of 20%. Re-
turns are daily and compounding. Average return
for all distributions is plotted in black.

In Exhibit 2, we show distributions of daily returns with various positive skews
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that all produce return series with the same annual compounding returns of 20%
and volatilities of 20% over long periods of time. As the skew increases, the mode of
the distribution grows increasingly negative, which may seem difficult to reconcile
with the distributions’ positive annual return. This apparent contradiction is possi-
ble because the mean of each distribution remains identical. As the skew increases,
the probability of increasingly large and positive returns also increases. Therefore,
while positively skewed distributions may frequently deliver negative returns, the
probability of a large positive return is also much greater.

Exhibit 2: Probability Distribution Functions of
Gamma Distributions of positive skew that each pro-
duce returns of 20% and volatilities of 20%. Returns
are daily and compounding. Average return for all
distributions is plotted in black.

To help visualize the probability of outperformance, in Exhibit 3, we plot the
cumulative probability distribution functions (CDFs) of return series with varying
skews, which show the probabilities that a return series will be equal to or less than
a given benchmark return. Exhibit 3 shows that series with negative skew have
a greater likelihood of delivering large, negative returns of values equal to or less
than -1.5%. Returns with positive skew are more likely to deliver negative values.
In fact, series with skews of 1.6 are over 20% more likely to deliver negative returns
than return series with skews of -1.6. This reality alone will push investors swayed
by recency bias and loss aversion to prefer a strategy with negative skew.
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Exhibit 3: Cumulative Probability Distribution
Functions of Gamma Distributions that each pro-
duce returns of 20% and volatilities of 20%. Returns
are daily and compounding.

On the other hand, return series with positive skew have a greater probability
than those of negative skew of delivering outsized positive returns, of values equal
to or greater than 1.5%. Also interesting, we see the CDFs of positive and negative
skews cross over each other twice. The asymmetric nature of the gamma distribi-
tions, also visible in Exhibits 1 and 2, causes these cross overs.

We also consider the relative probability distributions of return series with both
different skews and different annual returns. Here, we focus on scenarios in which
the negatively skewed return series have annual returns of 8% and the positively
skewed return series have annual returns of 16%. In Exhibit 4, we plot the PDFs
of series with 8% annual returns, 20% volatilities, and varying netagtive skews. In
Exhibit 5, we plot the PDFs of series with 16% annual returns, 20% volatilities,
and varying positive skews. If these distributions appear similar to those in Ex-
hibits 1 and 2, it is because they are. The average return in the first scenario, for
both the positively and negatively skewed series, is 0.0726%. In this scenario, the
average return for the negatively skewed and positively skewed series respectively
are 0.0307% and 0.0591%. In turn, the distribtions in this scenario will be shifted
slightly to the left on the x axis. This shift requires a close look to discern in Ex-
hibits 4 and 5.
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Exhibit 4: Probability Distribution Functions of
Gamma Distributions of negative skew that each
produce annual returns of 8% and annual volatilities
of 20%. Returns are daily and compounding. Aver-
age return for all distributions is plotted in black.

Exhibit 5: Probability Distribution Functions of
Gamma Distributions of positive skew that each pro-
duce returns of 16% and volatilities of 20%. Returns
are daily and compounding. Average return for all
distributions is plotted in black.

Likewise, the CDFs of these distributions with returns of 8% and 16%, shown
in Exhibit 6, are also shifted to the left along the x axis from their counterpart
distributions in Exhibit 3. Surprisingly, return series with skews of 1.6 and annual
returns of 16% have a 60% chance to be negative, while return series with annual re-
turns of 8% and skews of -1.6 are less than a 40% chance of being negative. In spite
of delivering annaulized returns that are two times greater, the positively skewed
return series are still 20% more likely to be negative. Skew is the sole reason for
this paradox. Furthermore, negative skew will drive investors susceptible to recency
bias and loss aversion to prefer a return series with fewer losses even though the
risk adjusted returns are only half as good.
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Exhibit 6: Cumulative Probability Distribution
Functions of Gamma Distributions of negative skew
that each produce annual returns of 8% and annual
volatilities of 20% and Cumulative Probability Dis-
tribution Functions of positive skew that each pro-
duce returns of 16% and volatilities of 20%. Returns
are daily and compounding.

4 Outperformance

Exhibits 1-6 each show how the nature of skew can influence our ability to judge
the quality of performance. In particular, small time scales with fewer data points
will magnify these misperceptions. As we alluded to in the previous section, nega-
tively skewed returns series should outperform on smaller time scales. Conversely,
positively skewed return series are more likely to deliver small losses over small time
scales and not the outsized winners that create positive skew. In this section, we
analyze large sets of simulated returns to quantify the relationship between outper-
formance, skew, and time horizon.

We first compare returns with zero skew to returns with varying skew over a
range of time periods. We prescribe 20% volatilties for all returns. Employing
gamma distributions described in Appendix A and the computational methods de-
scribed in Appendix C, we fix the skew of the first series at zero, and we vary the
skew of the second from -10 to 10. These values are fixed over a 20 year period. We
note that a skew of positive 10 is nearly impossible for returns over a 20 year period
and that large negative skews are rare but not without precedent. We explore this
extreme range to more definitively demonstrate the impact that skew has on out-
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performance in general. Over 20 year periods, we fix the Sharpe ratios of both the
zero skew series and the varied skew series at 1.0. Therefor, we know that over a 20
year period, neither series should outperform the other. However, when we look at
smaller subsets of these return series and analyze outperformance, the percentage
of outperformance is no longer 50%/50%. We vary the length of the subsets from 5
days to 2 years and summarize the comparison in Exhibit 7. In Exhibit 8, we plot
the percentage of time the return series with the varying skew outperforms the zero
skew series.

Fixed Skew Varying Skew
Quantity Return Series Return Series

20-year Volatility 0.20 0.20
20-year Sharpe 1.0 1.0
20-year Skew 0.0 -10.0 - 10.0

Exhibit 7: Prescribed characteristics of return series
in the first case.

Exhibit 8: Frequency of short term outperformance
between zero skew return series with 20% volatil-
ity and returns of 20% over 20 years and return se-
ries with the same volatility and returns but varying
skews. Exhibit 7 lists the values of the comparison.

When both skews are equal to zero, the percentage of outerperformance is 50%
as one would expect. However, on smaller time scales, Exhibit 8 shows that the
negatively skewed return series outperform zero skew series by up to 56% of the
time. Likewise, the most positively skewed return series underperform the zero
skew series by up to 44% on short scales. Furthermore, the magnitude of these out-
performances can be striking. Exhibit 8 shows that an investor susceptible to loss
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aversion and recency bias will inherently lean toward negative skew despite the re-
ality that all the return series in this scenario have the same long term performance.

Next, we compare return series with skews of -1.6 to return series with skews
ranging from -10 to 10. Again, we prescribe 20% volatilities for all series. Over 20
year periods, we fix the Sharpe ratios of the -1.6 skew series at 0.4, and we fix the
sharpe ratios of the series with varying skew at 0.8. Therefor, we know that over a
20 year period, the second return series will always outperform the first. However,
when we look at smaller subsets of these return series and analyze outperformance,
the percentage of outperformance is no longer 100%. As before, we vary the length
of the subsets from 5 days months to 2 years. We summarize the comparison in
Exhibit 9. In Exhibit 10, we plot the percentage of time the return series with 0.8
Sharpe and vary skew outperforms the return series with -1.6 skew and 0.4 Sharpe.

Fixed Skew Varying Skew
Quantity Return Series Return Series

20-year Volatility 0.20 0.20
20-year Sharpe 0.4 0.8
20-year Skew -1.6 -10.0 - 10.0

Exhibit 9: Prescribed characteristics of return series
in the second case.

Exhibit 10: Frequency of short term outperformance
between return series with 20% volatility, 8% re-
turns, and skews of -1.6 over 20 years and return
series with the same volatility, 16% returns, and
varying skews. Exhibit 9 lists the values of the com-
parison.

Exhibit 10 shows two general trends. First, as the skew becomes more negative,
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the outperformance becomes more frequent. These results are broadly in line with
those from the previous experiment shown in Exhibit 8. Second, as the time pe-
riod of observation increases, so does the outperformance. Again, we see that the
presence of skew in returns necessitates longer windows to more accurately evaluate
performance.

The results from Exhibit 10 also provide two specific points for discussion. First,
it is noteworthy that even after 2 years, the returns with long term Sharpe ratios
of 0.8 and varying skews are only outperforming returns with long term Sharpe
ratios of 0.4 and skews of -1.6 ∼60% of the time. Skew and volatility combine to
cause this low frequency of outperformance. Second, and more remarkable, on the
short time scale, return series with long term Sharpe ratios of 0.8 and positive skew
actually underperform those with long term Sharpe ratios of 0.4 and skews of -1.6.
Positive skew makes returns with twice the risk adjusted returns seem worse on
short time scales.

5 Drawdowns

Greyserman, Dugan, and Friccione [2017] investigate the impact of Sharpe ratio
and volatility on drawdown depth over 20-year periods. They show that volatility
increases drawdown depth approximately linearly and that Sharpe ratio does not
decrease drawdowns linearly. However, those simulations used returns with zero
skew. In this section, we investigate the impact that skew, volatility, and time
period have on drawdown depth and length.

First, we employ large sets of simulated returns to examine the effect that skew
and time period have on drawdowns. For all returns, we prescribe a volatility of
20% and a Sharpe of 0.8. We vary the prescribed skew from -3 to 3, and we vary the
time period we observe from 6 months to 20 years. For each combination of skew
and duration, we simulate 100,000 return series and find the deepest and longest
drawdowns for each. In Exhibit 11, we show the average maximum drawdown as a
function of skew and time period.

On the shorter time scales, particularly less than 2 years, change in skew makes
almost no difference to the maximum drawdown, while time is the main determin-
ing factor. However, as the time period increases, so does impact of skew until it
becomes the dominant factor. For samples of approximately 5 years, return series
with skews of 3 and -3 have maximum drawdowns of 14% and 30% respectively.
The difference in skew amplifies the depth of drawdown by a factor of 2. Looking at
the very long term of 20 years, return series with skews of 3 and -3 have maximum
drawdowns of 22% and 45% respectively. Again, the difference in skew doubles the
average maximum drawdown. The longer timescales highlight the hidden risks of
negative skew and the benefits of positive skew.

We can also think about the average maximum drawdown as a metrics for under-
lying risk. While negative skew will probably not make a difference to drawdowns
on short time scales, the possibility for greater loss still exists, but with a greater
probability of being realized on longer time periods.
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Exhibit 11: Gamma Distributions: Average maxi-
mum drawdown as a function of skew and time pe-
riod for return series with volatilities of 20% and
Sharpe ratios of 0.8.

To corroborate our results, we also employ a skew normal distribution, which
we document in Appendix B, in place of the gamma distribution, which we docu-
ment in Appendix A. In Exhibit 12, we show the average maximum drawdown as
a function of time period and skew, as generated from the skew normal distribu-
tions. Because of limitations in the construction of the skew normal distribution,
we examine a range of skews from -0.75 to 0.75. Again we see that on short time
scales, skew has little impact on drawdown depth, but its impact grows to become
the most important determinant of drawdown depth as time period increases.

The drawdown depths in Exhibit 12 agree well with those in the same range of
skews in Exhibit 11. For samples of approximately 75 months, return series with
skews of 0.75 and -0.75 have maximum drawdowns of 24% and 28% respectively, a
difference of roughly 17% of the drawdown. Over the very long term of 20 years,
return series with skews of 0.75 and -0.75 have maximum drawdowns of 32% and
40% respectively, an increase of roughly 25% of the drawdown. The magnitude
of difference in drawdown depth displayed in Exhibit 11 as opposed to Exhibit 12
results from the greater range of skews, but the similarity in distribution and rela-
tionship corroborates the conclusion that negative skew increases drawdown depth.
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Exhibit 12: Skew Normal Distributions: Average
maximum drawdown as a function of skew and time
period for return series with volatilities of 20% and
Sharpe ratios of 0.8.

We also analyze the impact skew has on drawdown length. In Exhibit 13, we
plot the average longest drawdown as a function of skew and time period. The
results again show no discernable difference between various skews on short time
scales. However, on longer time scales, skew makes a substantial differnce in draw-
down length as well. After approximately 18 years, the average longest drawdown
for series with skew of 3 we 36 months, while the mean for series with skews of -3
was 42 months, an increase of approximately 18%.
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Exhibit 13: Gamma Distributions: Average longest
drawdown as a function of skew and time period
for return series with volatilities of 20% and Sharpe
ratios of 0.8.

Together, Exhibits 11, 12, and 13 show that negative skew increases both draw-
down depth and length, while positive skew decreases both. Each of the figures also
shows that longer time scales are necessary to observe skew’s effects on drawdown.

We also investigate the combined impact of skew and volatility on drawdown
depth. We simulate large sets of return series with Sharpe ratios of 0.8 and time
periods of 20 years. We vary the skew from -3 to 3 and the volatility from 5% to
30%. In Exhibit 14, we show the average maximum drawdown as a function of skew
and volatility. The results show that for a given volatility, positive skew reduces
the maximum drawdowns while negative skew increases them. At 20% volatility,
return series with skew of 3 have maximum drawdowns of 22% while those with
skew of -3 have maximum drawdowns of 46%, more than a factor of 2 greater.

Greyserman, Dugan, and Friccione [2017] show that for normal distributions,
volatility increases drawdown depth approximately linearly. Exhibit 14 also shows
that positive skew dampens the increase in drawdown depth that volatility causes.
For a skew of 2, the increase in volatility from 5 to 30% increases maximum draw-
down by 28%. For a skew of -2, the same increase in volatility increases maximum
drawdown by 46%.

In Exhibit 15, we show the average longest drawdown as a function of skew and
volatility. Similarly, we find that for a given volatility, positive skew reduces the
longest drawdown, while negative skew increases it. Exhibit 15 also demonstrates
that positive skew dampens the increase in drawdown length that volatility causes.
For a skew of 2, the increase in volatility from from 5 to 30% barely increases
drawdown length. But for a skew of -2, the increase from 5-30% increases average
longest drawdown length by 6 months.
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Exhibit 14: Average maximum drawdown as a func-
tion of skew and volatility for return series with
Sharpe ratios of 0.8 over a 20 year period.

Exhibit 15: Average longest drawdown as a function
of skew and volatility for return series with Sharpe
ratios of 0.8 over a 20 year period.

6 Conclusion

In this paper, we show that returns with negative skew appeal to classic behavioral
biases, namely recency bias and loss aversion, because of the frequent winners and
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rare losers that inherently come with the distributions. We show that over short
time scales, these returns frequently outperform their zero skewed and positively
skewed counterparts, making them more attractive to those investors swayed by
bias.

However, while returns with negative skew deliver wins more frequently over the
short term, they also incur deeper and longer drawdowns over the long term. We
also show that negative skew amplifies the increase that volatility causes on draw-
down depth and length, while positive skew mitigates that same impact. From this
perspective, positive skew allows investors to capture the outsized returns of higher
volatility while shielding them from some of the requisite pain. Investors must be
aware of biases toward strategies that seem attractive over the short term, but that
eventually meet deeper, longer drawdowns, and in the worst cases, ruin.

Appendices

A Gamma Distributions

Gamma distributions depend on two input parameters: the shape k and the scale
θ. The probability distribution function (PDF) is:[9]

φ(k, θ, x) =
1

Γ(k)θk
xk−1e−x/θ (1)

in which Γ(k) is the gamma function of k. In turn this produces the cumulative
distribution function (CDF):

Φ(k, θ, x) =
1

Γ(k)
γ (k, x/θ) (2)

in which γ is the lower incomplete gamma function. In turn, these distributions
produce a skewness, a mean, and a variance of:

s = 2/
√
k (3)

x̄ = kθ (4)

σ2(x) = kθ2 (5)

B Skew Normal Distributions

The skew normal distribution is an extension of the classical normal distribution
that allows for the prescription of skew. The standard normal distribution is defined
as:[9]

φ(x) =
1√
2π
e−x

2/2 (6)
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for which the cumulative distribution function is:

Φ(x) =

∫ x

− inf
φ(t)dt (7)

Ohagna and Leonard [1976] introduce the skew normal distribution, and Azza-
lini [2014] documents the parametrization with shape paramater α, scale parameter
ω, and location parameter ξ. The skew normal distribution has the following prob-
ability distribution:[1]

φs(x) =
2

ω
φ

(
x− ξ
ω

)
Φ

(
α

(
x− ξ
ω

))
(8)

This distribution has the resulting skew:

γ =
4− π

2

(δ
√

2/π)3

(1− 2δ2/π)3/2
(9)

in which:
δ =

α√
1 + α2

(10)

Setting δ = 1 generates the maximum skewness of 1.
The skew normal distribution has a mean of:

x̄ = ξ + ωδ

√
2

π
(11)

and a mode of:
m = ξ + ωmo(α) (12)

in which:

mo(α) ∼ µz −
γσz
2
− sign(α)

2
e
−

2π

|α| (13)

in which:

µz =

√
2

π
δ (14)

and:
σz =

√
1− µ2z (15)

The skew normal distribution has a variance of:

σ2 = w2

(
1− 2δ2

π

)
(16)

C Prescribing Array Charactertics

To create a random array with a prescribed skew γ and scale ω, we first calculate
δ from γ using Equation 5. We then create random normal arrays u0 and v, which
we combine in the following equation:[1]

u1 = ω(δu0 + v
√

1− δ2) (17)

We then multiply all negative values by -1 so that they are positive. To prescribe
the location parameter ξ, we add ξ to the array:

u1 = u1 + ξ (18)
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We then prescribe the volatility of the array with the following equation:

u1 = u1 × σp/(σu1 ×
√
n) (19)

in which σp is the prescribed volatility, σu1 is the standard deviation of the array as
it was, and n is the number of compounding periods per year. Next, we prescribe
the compounding returns of the array using what the average returns per period
should be:

rp = (1 + ra)
1/n − 1 (20)

u1 = u1 − ū1 + rp (21)

in which ra is the prescribed annuliazed return. However, this formulation leads to
realized annual returns that are systemically less than the prescribed value, though
the standard deviation of realized returns is very low. The percentage error of
returns varies with prescrived returns, volatility, and period of time. After making
attempts at various analytical solutions, we settled on the computational solution
of adding incrementally to the array until the annualized returns are within 3% of
the prescribed value. The error on the prescribed skew and prescribed volatility
are substantially less than 1%.
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